$$
\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{~S} \text { AND } \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{~S}
$$



Fig. 2. A stereoview of the contents of one unit cell for ACLSA.
torsion angles $\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ and $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ are $-4.2(4)$ and $176.0(3)^{\circ}$ in ACLSA and $8.0(6)$ and $-172 \cdot 0(5)^{\circ}$ in CLSPA.

In both structures the molecular packing involves normal van der Waals contacts, with no intermolecular hydrogen bonding. A stereoview of the contents of one unit cell (Johnson, 1965) is shown for ACLSA in Fig. 2.

The results of the crystal structure analyses of these two dyes do not reveal any marked changes in molecular geometry which could be the cause of their different fiber affinity, nor have any such changes been observed between ABRCA (Handal, Gruska \& White, 1980) and BRCPA (Handal \& White, I980). The differing affinities may be due to a critical molecular
volume (Gerber, 1976) or to an important change in physical properties caused by the subtle chemical change.

We thank Dr E. J. Moriconi and Sandoz Ltd for crystals of the title compounds.

## References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1973). NRC Crystallographic Programs for the IBM/ 360 System. Accession Nos. 133-147 in J. Appl. Cryיst. 6, 309-346.
Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180-182.
Gerber, H. (1976). Private communication.
Gerber, H., Moriconi, E. J., Groeke, W. \& Altermann, R. (1976). Farbensymposium. Freudenstadt.

Handal, J. G., Gruska. R. P. \& White, J. G. (1980). In preparation.
Handal, J. G. \& White, J. G. (1980). In preparation.
International Tables for X-ray Crystallography (1968). Vol. III, 2nd ed., pp. 201-214. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Willis, B. T. M. \& Pryor. A. W. (1975). Thermal Vibrations in Crıstallography; pp. 101-102. Cambridge Univ. Press.

Acta Cryst. (1980). B36, 3206-3208

# [(1RS,2RS,3SR)-3-Hydroxy-2-methylcyclopentyl]trimethylammonium Chloride 

By Klaus Harms and George M. Sheldrick<br>Anorganisch-Chemisches Institut der Universität Göttingen, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany<br>and Roland Fischer and Lutz-F. Tietze<br>Organisch-Chemisches Institut der Universität Göttingen, Tammannstrasse 2, D-3400 Göttingen, Federal Republic of Germany

(Received 8 July 1980; accepted 26 August 1980)


#### Abstract

C}_{9} \mathrm{H}_{20} \mathrm{NO}^{+} . \mathrm{Cl}^{-}, \quad M_{r}=193 \cdot 72\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=7.440$ (2), $b=11 \cdot 609$ (2), $c=$ 12.295 (3) $\AA, \quad U=1061.9 \AA, \quad Z=4, \quad D_{x}=1.212$ $\mathrm{Mg} \mathrm{m}{ }^{-3}, \mu\left(\mathrm{Mo} K(r)=0.32 \mathrm{~mm}^{-1}\right.$. The structure was refined to $R=0.0415$ for 985 independent reflexions. The five-membered ring adopts the envelope conformation; the three substituents are cis. The two ions are linked by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond.

Introduction. The structure of the title compound has been determined to elucidate the arrangement of


 0567-7408/80/123206-03\$01.00substituents on the five-membered ring. As frequently found for saturated $\mathrm{C}_{5}$ rings, rapid conformational changes in solution (pseudorotation) ruled out an unambiguous structural assignment on the basis of NMR data alone.

Hygroscopic crystals were obtained from ethanol/ diethyl ether and sealed in Lindemann capillaries. Data were collected on a Stoe-Siemens four-circle diffractometer with a control program written by Clegg (1981) and a crystal $0.3 \times 0.3 \times 0.4 \mathrm{~mm} .1093$ data were recorded for $7<2 \theta<50^{\circ}$; after averaging (c) 1980 International Union of Crystallography

Table 1. Atom coordinates $\left(\times 10^{4}\right)$ and isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

|  | $x$ | $y$ | $z$ | $U$ |
| :---: | :---: | :---: | :---: | :---: |
| H(10) | 1981 (66) | -1687 (45) | -1336(40) | 141 (11) |
| 0 | 1794 (3) | -1586 (2) | -771 (2) | 55 (1)* |
| N | 7019 (3) | 446 (2) | 959 (2) | 37 (1)* |
| C(1) | 5641 (4) | -507 (2) | 741 (2) | 35 (1)* |
| H(1) | 6477 | -1135 | 700 | 44 |
| C(2) | 4584 (4) | -486 (2) | -331 (2) | 37 (1)* |
| H(2) | 5343 | -516 | -961 | 44 |
| C(3) | 3335 (4) | -1516 (3) | -88 (2) | 47 (1)* |
| H(3) | 3973 | -2221 | -220 | 61 |
| C(4) | 2755 (5) | -1347 (4) | 1082 (3) | 63 (1)* |
| H(4) | 1655 | -915 | 1110 | 81 |
| H(4') | 2584 | -2079 | 1430 | 81 |
| C(5) | 4264 (4) | -676 (3) | 1638 (2) | 46 (1)* |
| H(5) | 4764 | -1113 | 2228 | 58 |
| H(5') | 3838 | 51 | 1906 | 58 |
| C(6) | 3550 (5) | 588 (3) | -607 (2) | 54 (1)* |
| H(6) | 4333 | 1160 | -913 | 68 |
| H(6) | 2989 | 890 | 35 | 68 |
| H(6") | 2644 | 387 | -1129 | 68 |
| C(7) | 8379 (4) | 485 (3) | 59 (2) | 52 (1)* |
| H(7) | 8912 | -264 | -14 | 64 |
| $\mathrm{H}\left(7^{\prime}\right)$ | 9297 | 1039 | 226 | 64 |
| $\mathrm{H}\left(7^{\prime \prime}\right)$ | 7802 | 694 | -611 | 64 |
| C(8) | 7986 (5) | 149 (3) | 1993 (2) | 62 (1)* |
| H(8) | 8992 | 658 | 2081 | 76 |
| H(8) | 8403 | -633 | 1979 | 76 |
| H(8') | 7169 | 249 | 2590 | 76 |
| C(9) | 6262 (5) | 1640 (3) | 1069 (3) | 55 (1)* |
| H(9) | 5215 | 1622 | 1525 | 71 |
| H(9') | 5943 | 1936 | 366 | 71 |
| $\mathrm{H}\left(9^{\prime \prime}\right)$ | 7156 | 2128 | 1392 | 71 |
| Cl | 1624 (1) | 2246 (1) | 1983 (1) | 52 (1)* |

Table 2. Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$

| $\mathrm{C}(1)-\mathrm{N}$ | $1.532(5)$ |
| :--- | :--- |
| $\mathrm{C}(1)-\mathrm{C}(5)$ | $1.517(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(6)$ | $1.504(5)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.515(5)$ |
| $\mathrm{C}(7)-\mathrm{N}$ | $1.501(5)$ |
| $\mathrm{C}(9)-\mathrm{N}$ | $1.502(5)$ |
| $\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(7)$ | $110 \cdot 1(3)$ |
| $\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(8)$ | $108.0(3)$ |
| $\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(9)$ | $106.9(3)$ |
| $\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$ | $118.8(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$ | $106.3(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$ | $118.0(3)$ |
| $\mathrm{O}-\mathrm{C}(3)-\mathrm{C}(2)$ | $114.5(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $104.7(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $103.7(3)$ |


| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.535(5)$ |
| :--- | :--- |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.544(5)$ |
| $\mathrm{C}(3)-\mathrm{O}$ | $1.423(5)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.528(6)$ |
| $\mathrm{C}(8)-\mathrm{N}$ | $1.501(5)$ |


| $\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(8)$ | $107.6(3)$ |
| :--- | ---: |
| $\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(9)$ | $115.6(3)$ |
| $\mathrm{C}(8)-\mathrm{N}-\mathrm{C}(9)$ | $108.4(3)$ |
| $\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(5)$ | $114.7(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $97.5(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$ | $112.2(4)$ |
| $\mathrm{O}-\mathrm{C}(3)-\mathrm{C}(4)$ | $109.8(4)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $106.3(4)$ |

equivalents there remained 985 unique data with $F>4 \sigma(F)$, which were employed for the structure solution and refinement. The structure was solved by Patterson and Fourier methods and refined with complex neutral-atom scattering factors, anisotropic non-hydrogen atoms and weights $w=1 /\left[\sigma^{2}(F)+\right.$ $0.001 F^{2}$ ]. The hydroxyl H atom was located in a difference synthesis and refined independently with an individual temperature factor. The remaining H atoms were given fixed isotropic temperature factors of 1.2 times the equivalent $U$ of the C atom to which they were attached, and refined with riding constraints $\left(\mathrm{CH}, \mathrm{CH}_{2}\right)$ or as rigid groups $\left(\mathrm{CH}_{3}\right)(\mathrm{C}-\mathrm{H} 0.96 \AA$, $\mathrm{H}-\mathrm{C}-\mathrm{H} 109.5^{\circ}$ ). Refinement converged to $R^{\prime}=$ $\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|=0.0445$ with a corresponding $R$ of 0.0415 . Refinement of the enantiomeric structure gave almost identical $R$ values. This lack of sensitivity to the absolute configuration may have been caused by microcrystalline twinning; the sample employed was racemic. Final atomic coordinates are given in Table 1 ,* bond lengths, angles and selected torsion angles in Tables 2 and 3. A view of the cation is given in Fig. 1.

Discussion. The five-membered ring has the all-cis configuration and adopts the envelope conformation with $C(2)$ out of the plane of the other four ring atoms.

[^0]

Fig. 1. The cation, with $50 \%$ probability thermal ellipsoids for the non-hydrogen atoms.

Table 3. Torsional angles $\left(^{\circ}\right.$ )
The sign convention is as defined by Klyne \& Prelog (1960).

| $\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$ | $-56 \cdot 5(4)$ |
| :--- | ---: |
| $\mathrm{C}(8)-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$ | $-174 \cdot 0(3)$ |
| $\mathrm{C}(9)-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$ | $64 \cdot 7(4)$ |
| $\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-175 \cdot 2(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-44 \cdot 1(4)$ |
| $\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $161 \cdot 9(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}$ | $163 \cdot 4(3)$ |


| $\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}$ | $39.0(4)$ |
| :--- | ---: |
| $\mathrm{O}-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-151.0(4)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$ | $-0.3(4)$ |
| $\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(5)$ | $176.3(3)$ |
| $\mathrm{C}(8)-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(5)$ | $58.8(4)$ |
| $\mathrm{C}(9)-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(5)$ | $-62.5(4)$ |


| $\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$ | $-55 \cdot 1(4)$ |
| :--- | ---: |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$ | $76 \cdot 0(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $28 \cdot 6(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $43 \cdot 1(4)$ |
| $\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $-81 \cdot 3(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-27 \cdot 6(4)$ |



This conformation minimizes repulsion between the three substituents. The hydroxyl and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ groups are thus equatorial, the methyl substituent is axial. The maximum deviation from the cyclopentane torsion angles is $4^{\circ}$. The crystal is constructed from ion pairs
in which the ions are linked by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond $[\mathrm{O} \cdots \mathrm{Cl} 3.096$ (6), $\mathrm{H}(10) \cdots \mathrm{Cl} 2 \cdot 33$ (2) $\AA]$.

We thank the Verband der Chemischen Industrie for financial support. The SHELXTL program written by GMS was employed for structure determination and plotting.

## References

Clegg. W. (1981). Acta Cryst. A37. In the press.
Klyne. W. \& Prelog. V. (1960). Experientia. 16. 521-523.

## SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly' so marked; they' should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; the! will be published as speedily as possible.

Acta Cry'st. (1980). B36, 3208-3209
Lattice constants of the compounds $\mathbf{S r}_{2} \mathbf{L n A l O}_{5}$ and $\mathbf{S r}_{2} \mathbf{L n F e O} \mathbf{5}$. By M. Drofenik and L. Golič. Institute 'Jožef Stefan', Chemistry Department, University of Ljubljana, 61000 Ljubljana, Yugoslavia
(Received 29 May 1980: accepted 19 August 1980)


#### Abstract

Lattice parameters of the compounds $\mathrm{Sr}_{2} \mathrm{Ln}(\mathrm{Al}, \mathrm{Fe}) \mathrm{O}_{5}$ were determined and the non-linearity of the $r$ is $V^{1 / 3}$ plot is discussed.


As part of the research program on the structural and magnetic properties of the compositions in the ternary system $\mathrm{SrO}-\mathrm{Ln}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{O}_{3}$, crystals of compounds with the general formula $\mathrm{Sr}_{2} \mathrm{Ln}(\mathrm{Al}, \mathrm{Fe}) \mathrm{O}_{5}$ were prepared and the lattice parameters were redetermined. The crystals used for the lattice determination were prepared by the HST method (Drofenik, Golič \& Kolar, 1979).

The cell parameters given in Table 1 were measured at 293.2 (5) K using an Enraf-Nonius CAD-4 diffractometer.

Table 1. Comparison of cell parameters ( $\AA$ ), ionic radii $(\AA)$ and $V^{1 / 3}(\AA)$ for some related compounds

|  | $a$ | $c$ | ${ }^{\text {vili }} r$ | $V^{1 / 3}$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{Sr}_{2} \mathrm{LaAlO}_{5}$ | $6.885(1)$ | $11.059(1)$ | 1.160 | 8.063 |
| $\mathrm{Sr}_{2} \mathrm{PrAlO}_{5}$ | $6.809(1)$ | $11.032(1)$ | 1.126 | 7.997 |
| $\mathrm{Sr}_{2} \mathrm{NdAlO}_{5}$ | $6.791(1)$ | $11.004(1)$ | 1.109 | 7.976 |
| $\mathrm{Sr}_{2} \mathrm{SmAlO}_{5}$ | $6.757(1)$ | $10.972(2)$ | 1.079 | 7.942 |
| $\mathrm{Sr}_{2} \mathrm{EuAlO}_{5}{ }^{*}$ | $6.742(1)$ | $10.970(1)$ | 1.066 | 7.930 |
| $\mathrm{Sr}_{2} \mathrm{GdAlO}_{5}$ | $6.735(1)$ | $10.937(2)$ | 1.053 | 7.916 |
| $\mathrm{Sr}_{2} \mathrm{TbAlO}_{5}$ | $6.717(1)$ | $10.932(2)$ | 1.040 | 7.901 |
| $\mathrm{Sr}_{2} \mathrm{SmFeO}_{5}$ | $6.822(1)$ | $11.267(2)$ |  |  |
| $\mathrm{Sr}_{2} \mathrm{EuAlO}_{5}^{*}$ | $6.812(3)$ | $11.263(3)$ |  |  |
| $\mathrm{Sr}_{2} \mathrm{GdFeO}_{5}$ | $6.805(2)$ | $11.263(4)$ |  |  |

* Already published in Drofenik \& Golič (1979).

0567-7408/80/123208-02\$01.00

They were determined by least-squares refinement of 45 reflection angles in the range $10<\theta<25^{\circ}$, centered at $\pm 2 \theta$ using graphite-monochromated Mo $K a$ radiation $(\lambda=$ $0.70930 \AA$ ).

In Fig. 1 the plot of ionic radius, $r$, is $V^{1 / 3}$ is presented, where $V$ is the cell volume of the structure. Values of ${ }^{\text {v } 111} r^{*}$ were taken from the Shannon (1976) ionic radii. Good agreement was found for all rare-earth ions except $\mathrm{La}^{3+}$. Since the detailed structure of $\mathrm{Sr}_{2} \mathrm{LaAlO}_{5}$ was not known. one would suppose that the coordination number of $\mathrm{La}^{3+}$ is not similar to that of the other rare-earth ions in this isostructural series, namely eight (Drofenik \& Golič. 1979).

* The convention of Shannon (1976) is followed in this paper whereby a coordination number is denoted by a preceding Roman superscript. Thus ${ }^{{ }^{111}} r$ is the effective radius of the particular species when eightfold coordinated.


Fig. 1. $r(\AA)$ vs $V^{1 / 3}(\AA)$ for the first seven structures in Table 1.
(C) 1980 International Union of Crystallography


[^0]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35606 ( 8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

